

International Association of Chinese Infrastructure Professionals

## THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

## Wide Base Tire (WBT) load's impact on fatigue cracking of flexible pavement - Based on the Michigan Mechanistic-Empirical (ME) design method

Lei Yin, Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, leivin@mtu.edu Zhanping You, Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, zyou@mtu.edu Dongzhao Jin, Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, dongj@mtu.edu Jacob E. Hiller, Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, jhiller@mtu.edu Kai Xin, Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, kxin@mtu.edu

## **1. Background Introduction**

- Wide-base tires (WBT), due to the significant saving in energy consumption and simple mechanical load assembly, are increasing progressively in truck axles in many states of the US.
- Most research has failed to consider the range of WBT proportion and AC thickness impacts, which does not lend itself well to the practical pavement design process.
- The WBT loads' impact on pavement fatigue is not well quantified. Existing Pavement ME analysis procedures cannot directly assess the effects of WBTs on pavement response and ultimate pavement performance prediction.
- This study was commissioned to identify the impact of wide-base tire (WBT) loads on the flexible pavement's fatigue cracking using the Michigan Mechanistic-

## **3. WBT loads' impact on fatigue cracking analysis**



Empirical pavement design (MEPD) method.

Figure 2. WinJULEA analysis examples: Figure 3. Comparison of AC bottom tensile strain under DT and WBT loads









![](_page_0_Figure_18.jpeg)

 $0.00432 \times 10^{4.84(\frac{V_b}{V_a+V_b}-0.69)} \times k_1 \beta_1(\frac{1}{\varepsilon_t})^{k_2 \beta_2}(\frac{1}{E})^{k_3 \beta_3}$ 

Where:  $V_a$  is the asphalt mixture's air void;  $V_b$  is effective asphalt content;  $\varepsilon_t$  is AC bottom horizontal tensile strain; E is the elastic modulus of AC;  $k_1 = 0.007566; k_2 = 3.9492; k_3 = 1.281; \beta_1 = \beta_2 = \beta_3 = 1.$ 

$$FC_{Bottom-up,95\%} = FC_{Bottom-up,50\%} + S_e \times Z_{95}$$
  
Where:  $S_e$  is the standard error, and  $S_e = 0.7874 + \frac{17.817}{1+e^{0.0699-0.4559\times log_{10}(100D)}}$   
 $Z_{95} = 1.65$ 

| Table.    | Factors and                           | levels in the                                                                                                                                                                                                                                                      | orthogonal de                                                                                                                              | esign                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     |
|-----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lev<br>el | T <sub>AC-top</sub> (A)<br>(inch) *   | $ \begin{array}{c c} A \\ A \\ k \\ B \\ (B) \\ (psi) \end{array} \end{array} \begin{array}{c} T_{AC-leveling} \\ (C) \\ (inch) \\ (D) \\ (psi) \end{array} \end{array} \begin{array}{c} E_{AC-leveling} \\ (D) \\ (psi) \\ (D) \\ (psi) \end{array} \end{array} $ |                                                                                                                                            | T <sub>AC-base</sub><br>(E) (inch)                                                                                                               | E <sub>AC-base</sub><br>(F) (psi)                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |
| 1         | 2                                     | 250,000                                                                                                                                                                                                                                                            | 2                                                                                                                                          | 250,000                                                                                                                                          | 2                                                                                                                                                                                                                  | 250,000                                                                                                                                                                                                                                             |
| 2         | 3                                     | 300,000                                                                                                                                                                                                                                                            | 3                                                                                                                                          | 300,000                                                                                                                                          | 3                                                                                                                                                                                                                  | 300,000                                                                                                                                                                                                                                             |
| 3         | 4                                     | 350,000                                                                                                                                                                                                                                                            | 4                                                                                                                                          | 350,000                                                                                                                                          | 4                                                                                                                                                                                                                  | 350,000                                                                                                                                                                                                                                             |
| 4         | 5                                     | 400,000                                                                                                                                                                                                                                                            | 5                                                                                                                                          | 400,000                                                                                                                                          | 5                                                                                                                                                                                                                  | 400,000                                                                                                                                                                                                                                             |
| 5         | 6                                     | 450,000                                                                                                                                                                                                                                                            | 6                                                                                                                                          | 450,000                                                                                                                                          | 6                                                                                                                                                                                                                  | 450,000                                                                                                                                                                                                                                             |
|           | Table.   Lev   el   1   2   3   4   5 | Lev<br>el $T_{AC-top}$ (A)<br>(inch) *1223344556                                                                                                                                                                                                                   | Table.Factors and levels in theLev<br>el $T_{AC-top}(A)$<br>(inch)* $E_{AC-top}$<br>(B) (psi)12250,00023300,00034350,00045400,00056450,000 | Lev<br>el $T_{AC-top}(A)$<br>(inch)* $E_{AC-top}$<br>(B) (psi) $T_{AC-leveling}$<br>(C) (inch)12250,000223300,000334350,000445400,000556450,0006 | Lev<br>el $T_{AC-top}(A)$<br>(inch)* $E_{AC-top}$<br>(B) (psi) $T_{AC-leveling}$<br>(C) (inch) $E_{AC-leveling}$<br>(D) (psi)12250,0002250,00023300,0003300,00034350,0004350,00045400,0005400,00056450,0006450,000 | Lev<br>el $T_{AC-top}(A)$<br>(inch)* $E_{AC-top}$<br>(B) (psi) $T_{AC-leveling}$<br>(C) (inch) $E_{AC-leveling}$<br>(D) (psi) $T_{AC-base}$<br>(E) (inch)12250,0002250,000223300,0003300,000334350,0004350,000445400,0005400,000556450,0006450,0006 |

Where,  $P\Delta\varepsilon_t$  is the AC bottom tensile strain increase from under DT load to WBT load, %;  $T_{AC}$  is the total AC thickness, inch.  $R_{D-PWBT}$  is the damage index ratio in  $P_{WBT}$ ,  $P_{WBT}$  is the percentage of WBT load in a certain area, %.

Adjusted bottom-up cracking threshold =  $20 - (0.01 \text{distress increase}) \times 20$ 

Table. Adjusted flexible pavement fatigue design threshold

|            |     | Adjusted fatigue design threshold (%) |       |       |       |       |       |  |  |
|------------|-----|---------------------------------------|-------|-------|-------|-------|-------|--|--|
| Variabl    | les | AC thickness (inch)                   |       |       |       |       |       |  |  |
|            |     | 6                                     | 8     | 10    | 12    | 14    | 16    |  |  |
|            | 5   | 19.54                                 | 19.71 | 19.81 | 19.86 | 19.89 | 19.91 |  |  |
| WBT        | 10  | 19.11                                 | 19.44 | 19.62 | 19.73 | 19.79 | 19.83 |  |  |
| proportion | 15  | 18.70                                 | 19.17 | 19.44 | 19.59 | 19.68 | 19.74 |  |  |
| (%)        | 20  | 18.30                                 | 18.91 | 19.26 | 19.46 | 19.58 | 19.65 |  |  |
|            | 25  | 17.93                                 | 18.66 | 19.08 | 19.33 | 19.48 | 19.57 |  |  |

![](_page_0_Picture_27.jpeg)