

Introduction & Objective

Background

- Lignin fiber widely used in asphalt mixture is derived from logs, and its large-scale production and application will consume a lot of forest resources.
- It is urgent to find green and renewable plant fibers to replace lignin fiber.
- Bamboo is a good substitute for lignin fiber because of its rapid growth characteristic and good physical and mechanical properties.
 Objective
- Evaluate the freeze-thaw cycle durability of bamboo fiber asphalt mixture and study the damage evolution law of bamboo fiber asphalt mixture during freezing-thawing.
- Establish freeze-thaw damage evolution model and propose the estimation method for the remaining life of freeze-thaw damage of bamboo fiber

Materials & Methods

 \blacktriangleright Asphalt: Styrene-butadiene-styrene (SBS) modified asphalt. \succ Test device: According to

Fibers and microscopic morphology:

(a) Lignin fiber

(b) Bamboo fiber

Aggregate gradation of asphalt mixture:

Mixture type	Mass fraction pass each sieve ,mm										
	19	16	13.2	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
AC-13	-	100.0	95.5	80.0	46.5	35.8	26.0	19.3	14.0	10.6	7.4
AC-16	100.0	99.2	88.0	72.2	46.0	35.1	23.8	15.7	11.0	9.1	6.3
SMA-13	-	100.0	91.9	63.9	24.7	20.8	17.7	15.4	13.7	12.6	10.0
SMA-16	100.0	95.0	70.0	51.4	27.7	21.8	18.2	15.4	12.7	11.6	10.5

the specification JTG E20-2011, cylindrical specimens for splitting tests under different freeze-thaw cycles.

Establishment of freeze-thaw damage evolution model:

Conclusions

- The smaller the void ratio of fiber asphalt mixture, the thicker the asphalt film, the denser the structure, and the better its freeze-thaw cycle durability. The freeze-thaw cycle durability of the SMA gradation mixture is better than that of the AC gradation mixture.
- The established freeze-thaw damage evolution model can reflect the evolution law of freeze-thaw damage of bamboo fiber asphalt mixture, and the practical significance of model parameters is analyzed.
- The actual freeze-thaw time when the splitting strength damage reaches 25% can be used as the freeze-thaw resistance life of the bamboo fiber asphalt mixture.

