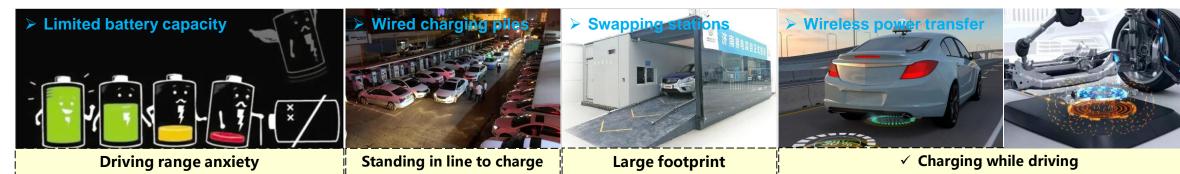


International Association of Chinese Infrastructure Professionals


THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation

Yanjie LI, Beihang University, yanjieli@buaa.edu.cn Siqi ZHOU, Beihang University, zsq47@buaa.edu.cn Feng LI* (corresponding author), Beihang University, lifeng98@buaa.edu.cn

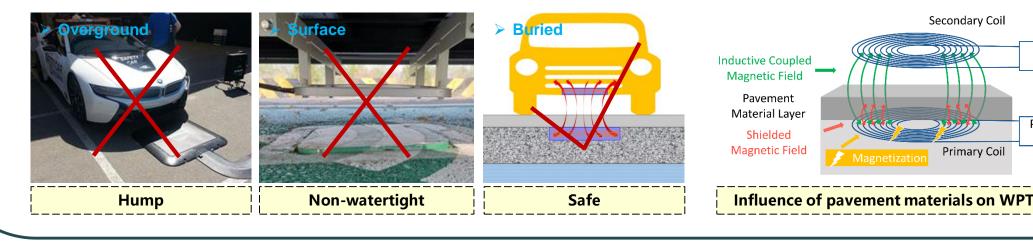
Introduction


Compared with petrol vehicles, electric vehicles are beneficial to achieving carbon net zero in transportation. **D** However, the energy storage capacity of electric vehicle batteries is limited, leading to the driving range anxiety. **U** Wireless power transfer (WPT) technology is considered to be one of the ways to alleviate the charging difficulties.

□ In practice, to ensure the durability of pavement, and

Results and discussion

> Magnetic properties of pavement materials

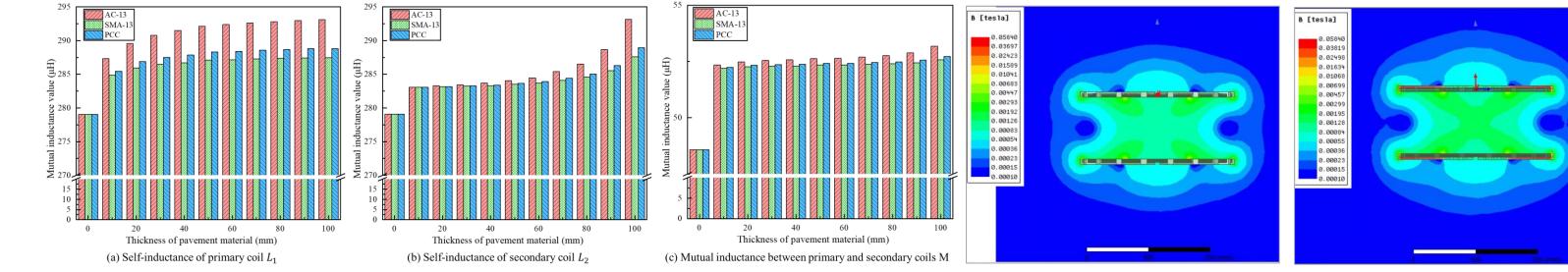

Hysteresis loop of raw materials.

Relative effective permeability of different types of pavement materials

Gradation type	AC-13	SMA-13	РСС
μ_e	1.04864	1.02120	1.02774

- Among the raw materials, limestone had the highest permeability, followed by cement, basalt was the third, and asphalt had the lowest permeability, which was almost negligible.
- The effective relative permeability of different pavement materials was: AC-13>PCC>SMA-13.

- prevent the circuits to become obstacles for driving, the primary circuits should be buried in the pavement structure. □ Then, the transmission media-air between primary and secondary coil is replaced by pavement materials.
- Previous study indicated that pavement materials can adversely affect the resonant induction coupling process of WPT, reducing the power and efficiency of charging.
- □ However, the influence mechanism and how to reduce the influence remains unclear.



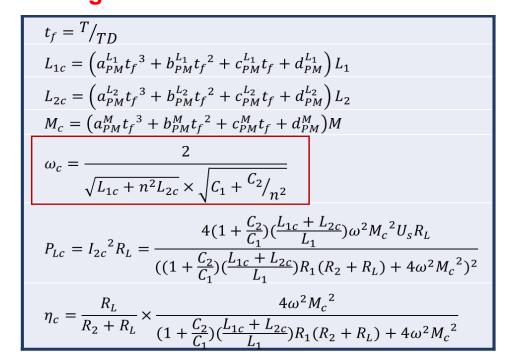
Objectives

- **D** To quantitatively evaluate the magnetization properties of pavement materials by equivalent magnetic circuit model. **D** To evaluate the influence mechanism of pavement materials on the resonant induction coupling process. □ To provide the calculate formulae of resonant frequency for system tuning to reduce the energy loss due to the
 - insertion of pavement materials.

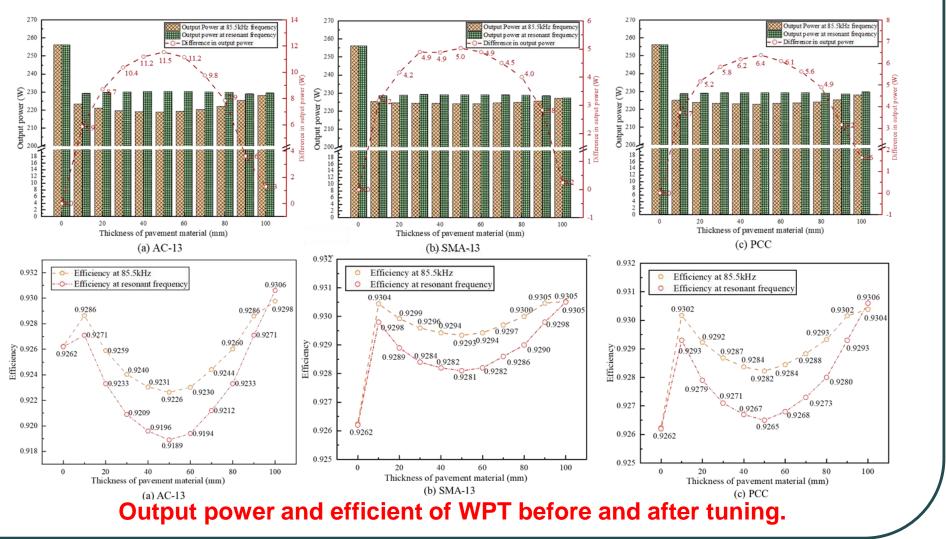
> Influence of pavement materials on resonant induction coupling

- L_1 , L_2 , and M increased with the pavement materials inserted because of the increase of magnetic field intensity.
- L_1 : convex shape, L_2 : concave shape, M: first convex, and then concave.

 L_1 , L_2 and *M* at different thicknesses of pavement materials.


Establishment of tuning model

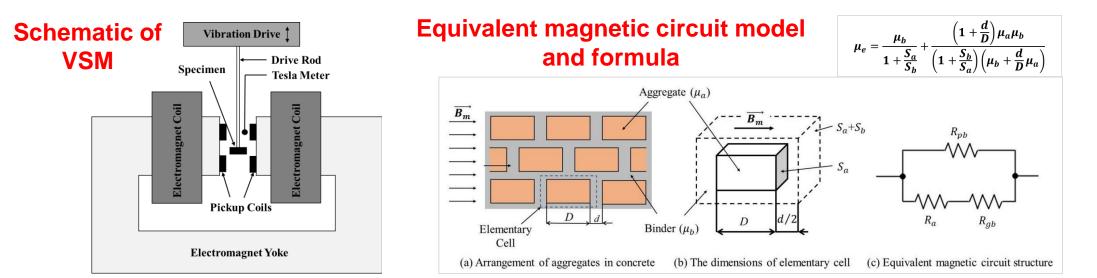
- The thickness factor t_f and material factor a_P^L ... were constructed according to change rate curves of L_1 , L_2 , and M.
- The tuning formula of resonant induction coupling process was proposed to restore the resonant state.


> Verification of tuning model

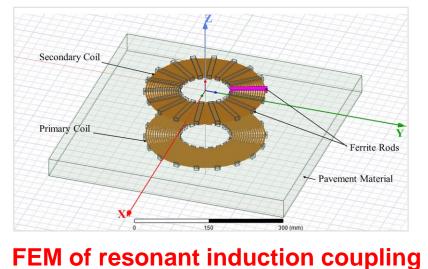
After tuning, the output power increased and the efficiency decreased, but the reduction was only about 0.2%.

Tuning formula of WPT

Cloud images of magnetic field. (a) AC-0cm. (b) AC-100mm


Materials and Modeling

> pavement materials


- Asphalt concrete (AC-13 and SMA-13)
- Portland cement concrete (PCC)

> Test of magnetic properties

- Relative permeability of raw materials tested by VSM
- Effective relative permeability of pavement materials calculated through equivalent magnetic circuit model

> 3D Finite element model and Mathematical model

	Calculation formulas of power and efficiency			
Secondary Coil	$\begin{bmatrix} U_s \\ 0 \end{bmatrix} = \begin{bmatrix} Z_1 & -j\omega M \\ -j\omega M & Z_2 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$	$\omega = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}}$		
Primary Coil Ferrite Rods	$P_{L} = I_{2}^{2} R_{L} = \frac{1}{((R_{1} + j(\omega L_{1} - \frac{1}{\omega C_{1}})))}$	$= I_2^2 R_L = \frac{\omega^2 M^2 U_S^2 R_L}{((R_1 + j \left(\omega L_1 - \frac{1}{\omega C_1}\right))(R_2 + j \left(\omega L_2 - \frac{1}{\omega C_2}\right) + R_L) + \omega^2 M^2)^2}$		
EM of resonant induction coupling	$\eta = \frac{R_L}{R_2 + j\left(\omega L_2 - \frac{1}{\omega C_2}\right) + R_L} \times \frac{\omega^2 M^2}{(R_1 + j\left(\omega L_1 - \frac{1}{\omega C_1}\right))(R_2 + j\left(\omega L_2 - \frac{1}{\omega C_2}\right) + R_L) + \omega^2 M^2}$			
process to obtain L_1 , L_2 , and M				

AC-13

SMA-13

PCC

The minimum efficiency under the three materials still met the requirements of the specifications.

Conclusions

- $D L_1, L_2$, and M increased with the pavement thickness and the power loss caused by material type was: AC-13>PCC>SMA-13.
- □ The loss of power and efficiency can be compensated by adjusting the frequency of the high-frequency voltage supply. The formula for tuning the resonant frequency of the power supply and for calculating the power and efficiency after tuning were given. • After tuning, the corresponding output power of different kinds of pavement materials from high to low was: AC-13 > PCC > SMA-13. The efficiency of the system before and after tuning was more than 90%, which met the requirements of the specification. **D** The tuning model proposed is effective.

Acknowledgement

□ National Natural Science Foundation of China (No. 52278424) Innovation Program for Automobile Environmental Protection by FAW-Volkswagen

