Change

Pore Structure and Mechanical Properties of FRCC in the Freeze-thaw Environment: A Review

Weizhe Wu, Huagiao University, 21014086094@stu.hqu.edu.cn Yixin Zhang, Huaqiao University, zhangyixin@hqu.edu.cn Yang Liu, Huaqiao University, Iyliuyang@hqu.edu.cn

THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate

Introduction

- Fiber reinforced cement composites (FRCC) is a composite material formed by the homogeneous blending of non-continuous short fibers as reinforcement in a cement matrix.
- The fiber-bridging stress resists the crack opening and prevents the entry of harmful substances, which improves the tensile properties and *durability* of FRCC.
- **Pore structure** is the key to analyzing the frost resistance of FRCC.
- As a heterogeneous material, the cracking behavior of FRCC is dependent on different *micromechanical* constituent parameters, mainly including fiber, matrix, and fiber-matrix interfacial properties.

Objectives

- Investigate the effects of fiber inherent properties on the pore characteristics of FRCC under different freeze-thaw cycles.
- Investigate the correlation between the inherent properties of fiber, fiber-matrix interface bonding property, and the *mechanical* properties of FRCC in the freeze-thaw environment.
- Summarize the existing freeze-thaw damage models of FRCC based on pore structure and propose the prospect of establishing *multi*scale freeze-thaw damage models.

Pore Structure Characteristics

Spacing Factor(*L*)

- *Theoretically*, the lower the *L*, the lower the hydrostatic pressure and the better the frost resistance of FRCC;
- Established *experimental studies* have found that changes in *L* do not affect the frost resistance.

Cumulative Pore Volume Distribution(CPVD)

- The incorporated fibers increase the air content of matrix and produce fiber-matrix ITZ, which has a certain effect on the large and capillary pores.
- The fibers effectively *resists the tendency* of pore changes caused by freeze-thaw cycles and inhibits freeze-thaw damage.

Fractal Dimension(D_s)

- The fractal of pores is *scale-dependent*; The *D*_S of large pores is significantly reduced:
- A Ds-based freeze-thaw damage model has been developed.

Mechanical Properties

> Tensile Strength

- Fibers: 1. Air content of matrix(1); 2. Bridging effect to restrain matrix.
- Hydration Degree: Continued hydration causes increased strength.

Tensile Strain Capacity

- Mainly related to the *degree of fiber* maintenance bridging:
 - 1. Fiber modulus of elasticity;
 - 2. Interfacial bonding strength;
 - 3. Matrix toughness.

Fibers:

1. Rigid fibers are most effective;

Compressive Strength

compressive strength (11).

Freezing-thaw cycles:

Axial tensile stress-strain curve of FRCC

before and after F-T cycles

2. Fiber *volume content*: appropriate;

3. "Positive *mixing effect*".

Relationship between Pore Structure and **Mechanical Properties**

Mechanical Properties	Pore Characteristics	Existing Model
Compressive Strength	Porosity	$\sigma=\sigma_0(1-p)^n$ σ - Compressive strength; σ_0 -Theoretical compressive strength at zero porosity; ρ - porosity ; n - empirical power index.
	Pore Distribution Fractal Dimension	$R_c=4.7375\cdot(rac{D_S}{V_c})^{0.3995}$ R_c - Compressive strength; D_s - $Fractal\ dimension$ of the pore surface; V_c - Volume of the $capillary\ pore$.
Frost Resistance (Relative Dynamic Modulus of Elasticity, etc)	Fractal Dimension	$\omega = 1 - \frac{D_{S,FT} - D_{S,min}}{D_{S0} - D_{S,min}}$ $D_{S,FT}$ - fractal dimension under the damage status subject to the FT cycles; D_{S0} - initial fractal dimension before the FT cycles; $D_{S,min}$ - minimum value of fractal dimension, constant; ω - damage parameter. Freeze-thaw durability coefficient $\textit{Kn}(RDME)$ with the damage parameters ω revealed a significant $\textit{negative correlation}$.
Tensile Strength	Micromechanical Parameters (Pore size\Porosity)	$\sigma_c(c,c_p) = g\sigma_0 \left[\frac{\sqrt{\pi}}{2} \frac{\overline{K}}{\tilde{\delta}^{*-1} \sqrt{(c+c_p)/c_p}} + (\frac{4}{3} \sqrt{\overline{c}} - \frac{1}{2} \overline{c}) \right]$ A quantitative relationship is established between micromechanical parameters (<i>pore size, porosity</i>) and <i>cracking strength</i> .

Prospects for the modified model:

Combining the quantitative relationship between pore characteristics parameters and *mechanical properties* as well as *freeze-thaw damage* parameters, a freeze-thaw damage model based on the macro mechanical index of pore structure parameters can be established.

Conclusions

- The association between pore characteristics and freeze-thaw damage is mostly characterized qualitatively or semi-quantitatively, and there is no quantitative general model.
- The *appropriate* amount of fiber incorporation can effectively reduce the mechanical property damage of FRCC caused by freeze-thaw cycles; Changes in microscopic parameters that occur during freezethaw cycles need to be consistently quantified.
- Investigate the effect of fibers on the evolutionary process inside the material under freeze-thaw cycles from the micro-scale is the basis for the establishment of a freeze-thaw damage model for macroscopic mechanical indicators.