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Introduction

Objectives

Pore Structure Characteristics

Mechanical Properties

➢ Spacing Factor(L)
• Theoretically, the lower the L, the lower the hydrostatic pressure and

the better the frost resistance of FRCC；
• Established experimental studies have found that changes in L do not

affect the frost resistance.

➢ Cumulative Pore Volume Distribution(CPVD)
• The incorporated fibers increase the air content of matrix and produce

fiber-matrix ITZ, which has a certain effect on the large and capillary

pores.

• The fibers effectively resists the tendency of pore changes caused by

freeze-thaw cycles and inhibits freeze-thaw damage.

➢ Fractal Dimension(Ds)

Relationship between Pore Structure and 
Mechanical Properties

Conclusions

• Fiber reinforced cement composites (FRCC) is a composite material

formed by the homogeneous blending of non-continuous short fibers

as reinforcement in a cement matrix.

• The fiber-bridging stress resists the crack opening and prevents the

entry of harmful substances, which improves the tensile properties

and durability of FRCC.

• Pore structure is the key to analyzing the frost resistance of FRCC.

• As a heterogeneous material, the cracking behavior of FRCC is

highly dependent on different micromechanical constituent

parameters, mainly including fiber, matrix, and fiber-matrix interfacial

properties.

• Investigate the effects of fiber inherent properties on the pore

characteristics of FRCC under different freeze-thaw cycles.

• Investigate the correlation between the inherent properties of fiber,

fiber-matrix interface bonding property, and the mechanical

properties of FRCC in the freeze-thaw environment.

• Summarize the existing freeze-thaw damage models of FRCC based

on pore structure and propose the prospect of establishing multi-

scale freeze-thaw damage models.

• The fractal of pores is scale-dependent；
The Ds of large pores is significantly

reduced；
• A Ds-based freeze-thaw damage model

has been developed.

➢ Tensile Strength
• Fibers: 1. Air content of matrix(⬆)；2.Bridging effect to restrain matrix.

• Hydration Degree: Continued hydration causes increased strength.

➢ Tensile Strain Capacity
• Mainly related to the degree of fiber

maintenance bridging:

1. Fiber modulus of elasticity;

2. Interfacial bonding strength;

3. Matrix toughness.

• The association between pore characteristics and freeze-thaw damage 

is mostly characterized qualitatively or semi-quantitatively, and there is 

no quantitative general model.

• The appropriate amount of fiber incorporation can effectively reduce 

the mechanical property damage of FRCC caused by freeze-thaw 

cycles; Changes in microscopic parameters that occur during freeze-

thaw cycles need to be consistently quantified.

• Investigate the effect of fibers on the evolutionary process inside the 

material under freeze-thaw cycles from the micro-scale is the basis for 

the establishment of a freeze-thaw damage model for macroscopic 

mechanical indicators.

➢ Compressive Strength
• Freezing-thaw cycles:

compressive strength (⬆⬇).

• Fibers:

1. Rigid fibers are most effective;

2. Fiber volume content: appropriate;

3. “Positive mixing effect ”.
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Typical classification of fiber reinforced cement composites Freeze-thaw damage mechanisms

Bi-logarithmic curve in the four fractal regions
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        (a) The CPVD curve of FRCC with different fiber types; 

(b)  The CPVD curve before and after F-T cycles.

Counter Trend

The CPVD curves of FRCC

Axial tensile stress-strain curve of FRCC

before and after F-T cycles

Compressive strength loss ratio of FRCC 

after F-T cycles
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Freeze-thaw cycles
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 --Tensile strength and Tensile strain capacity
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Pore 

Characteristics 
Existing Model

Compressive 

Strength

Porosity

𝜎 = 𝜎0(1 − 𝑝)𝑛
𝜎 - Compressive strength;
𝜎0 -Theoretical compressive strength at zero porosity;
p - porosity;
n - empirical power index.

Pore Distribution

Fractal Dimension

𝑅𝑐 = 4.7375 ∙ (
𝐷𝑠

𝑉𝑐
)0.3995

Rc - Compressive strength;

Ds - Fractal dimension of the pore surface;

Vc - Volume of the capillary pore.

Frost 

Resistance 
(Relative Dynamic Modulus 

of Elasticity , etc)

Fractal Dimension

𝜔 = 1 −
𝐷𝑠,𝐹𝑇−𝐷𝑠,𝑚𝑖𝑛

𝐷𝑠0−𝐷𝑠,𝑚𝑖𝑛
Ds,FT - fractal dimension under the damage status subject to the FT cycles; 

Ds0 - initial fractal dimension before the FT cycles; 

Ds,min - minimum value of fractal dimension, constant;

w - damage parameter.
Freeze-thaw durability coefficient Kn(RDME) with the damage parameters w
revealed a significant negative correlation.

Tensile Strength
Micromechanical 

Parameters 

(Pore size\Porosity) A quantitative relationship is established between micromechanical
parameters (pore size, porosity) and cracking strength.

Prospects for the modified model:

Combining the quantitative relationship between pore characteristics

parameters and mechanical properties as well as freeze-thaw damage

parameters, a freeze-thaw damage model based on the macro

mechanical index of pore structure parameters can be established.

Region 3

Region 2
Region 1

Ds＞3

Region 1--Gel pore

Region 2--Transition pore

Region 3--Capillary pore

Region 4--Large pore
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