

International Association of Chinese Infrastructure Professionals

THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

Monitoring the Compaction Condition of Asphalt Pavement Based on Particle Kinematic Behaviors

Shuai Yu, Pennsylvania State University (University Park), <u>sqy5325@psu.edu</u> **Shihui Shen**, Pennsylvania State University (Altoona), <u>szs20@psu.edu</u>

Introduction

- Compaction is critical for pavement's performance and service life. Current compaction methods cause uniformity and over/under compaction issues.
- Intelligent compaction (IC) technology can improve compaction uniformity but still cannot well monitor pavement compactability.
- Machine learning (ML) algorithm and sensing technology will be combined for quality control of asphalt pavement compaction.

Objective

- > Explain the **compaction mechanisms** of asphalt pavement from **mesoscale**;
- Develop an intelligent model to predict the compaction of asphalt pavement to achieve an automated assessment of field compaction

Results and Analysis

- **Correlation between the lab and field compaction**
- Three-stage patterns are identified in both lab and field compaction:
- **Breakdown stage:** Short, the most dramatic rotation and speedy decrease.
- Main compaction stage: Imbalance interaction between compaction loadings and particle shearing resistances.
- ➢ Finishing stage: Interactions are balanced and particle rotation is static.

Methodology

PerceptionAnalysisDecision-making(Data collection)(Training the intelligent model by lab data)(compaction prediction)

- The wireless sensor and the ML algorithm are combined to predict the compaction condition of the asphalt mixture/pavement.
- Multinominal Logistic Regression (MLR) is selected for the compaction prediction Artificial
 Neural Network (ANN) is selected for the density prediction.

Experiment and Model

> 11 asphalt mixtures, total 32 specimens are compacted in the lab.

Prediction Results

- Two field projects can be reasonably predicted based on the Machine Learning
 (ML) model training by the laboratory compaction data.
- Laboratory Compaction Prediction: MLR model : > 90% Accuracy ANN model: → 100 95 90 85 80 100 95 90 85 80

➢ 2 field compaction projects (Altoona and Indiana project) are carried out.

1	Far under compaction	< 88% <i>Gmm</i>
2	Under compaction	88%-91%
3	Good compaction	91%-93%
4	High density compaction	93%-96%
5	Over compaction	>96%Gmm

Input for the ML model

- Particle relative rotation;
- Mixture design information;
- Accumulated compaction energy.

Output for the ML model

- MLR: Compaction condition (5 category)
- ➤ ANN: Pavement density (%Gmm)

 \blacktriangleright Mean Relative Error (MRE) < 0.5%

Project	Altoona Project											
Cycle	1	2	3	4	5	6	7	8	9	10	11	
Roller	V	V	V	S	S	S	V	V	V	S	S	
MLR	1	1	1	1	2	2	2	3	3	3	3	
ANN	78.2	83.7	88.3	88.8	89.8	90.3	91.4	92.2	92.4	92.8	93.1	
Project	Ind	iana	Note: Core density:									
Cycle	1	2	 The Class 1,2,3 means the Far under compaction, 93.1; 93.6 Under compaction and Good compaction, respectively; Core density is the density of the core sample (%G_{mm}) as the true value for verification. 									
Roller	V	V										
MLR	2	3										
ANN	91.7	93.1	Core	density:								
			92.8	3; 92.5								

Conclusions

- Three-stage compaction patterns are identified for both lab and field compaction based on particle rotation.
- > Multinominal logistic regression (MLR) and Artificial Neural Network

(ANN) are appropriate to predict the compaction conditions of the asphalt pavement.

A reasonable density can be predicted by the ML model trained by the lab data using the particle rotation, compaction energy, and mixture design as inputs.

