

International Association of Chinese Infrastructure Professionals

Implementing the LWD for MoDOT Construction Acceptance of Unbound Material Layers

Student: Chuanjun Liu, Missouri University of Science and Technology, <u>cl8b7@mst.edu</u> Beshoy Riad, LANGAN Eng. and Env. Services, Inc., briad@langan.com

Co-advisors: Drs. Jenny Liu and Xiong Zhang, Missouri University of Science and Technology

INTRODUCTION

- Conventional density-based methods of unbound materials compaction quality assurance (QA) using nuclear density gauges (NDG) become less desirable because of safety, regulatory, and cost concerns.
- □ The density is not a direct input to the structural design of pavements and is not directly linked to the long-term performance of pavements, instead the modulus is.
- Modulus-based compaction QA of unbound materials is gaining attention, several devices were proposed in the last decades.
- Modulus-based compaction QA method using the lightweight deflectometer (LWD) has been employed by a few state DOTs and countries.
- □ Missouri DOT is interested in shifting from the NDG to LWD in unbound materials compaction QA.

LWD TESTS ON PROCTOR MOLD

- LWD tests on Proctor mold were conducted, using Zorn Lab 3.0 LWD shown in the INTRODUCTION, on the four types of soils compacted at a range of MCs depending on their OMCs.
- Results of LWD tests on Proctor mold, including deflection vs. MC and lab LWD modulus vs. MC, were plotted along with compaction curves.
- \Box Coefficient α_i were determined by fitting results to Eq. (1) using Excel Solver, which were used in Eq. (2) later.

SGB sand (SW) – Defl. vs. MC

OBJECTIVES

- □ To classify four soils and determine their optimum moisture contents (OMC) and maximum dry densities (MDD).
- □ To determine field target moduli for tested soils through laboratory LWD tests on Proctor mold on corresponding samples at acceptable moisture contents (MC). (OMC-3% to OMC for MoDOT)
- □ To evaluate compaction acceptance of tested soils using MC and field-to-target LWD modulus ratio criteria successively.

METHODOLOGY

Laboratory and field tests						
Lab/field	Tests	Results				
Lab	Soil classification	Soil type				
	Compaction test	OMC and MDD				
	LWD test on Proctor mold	Lab LWD moduli (E_{lab}), lab MCs (MC_{lab}), lab applied stresses (P_{lab}) and coefficients (α_i)*				

Silty clay (CL) – Defl. vs. MC

Base aggregate (SW) – E_{lab} vs. MC

Coefficients α_i

Soils	Lean clay (CL)	SGB sand (SW)	Base agg. (SW)	Silty clay (CL)
α_0	101.5083	72.34699	-35.96733	270.54287
α ₁	-3.54272	-4.63602	17.988002	-25.59477
α2	-0.09918	-0.21032	-1.869550	0.5445991
α ₃	148.8916	35.00368	402.13784	287.61439
α_4	-128.78	223.637	-751.2629	-663.0138

FIELD LWD TESTS AND COMPACTION ACCEPTANCE EVALUATION

 $- \cdot \cdot MC = 9.5\%$

MC (%)

Silty clay (CL) – E_{lab} vs. MC

------ 106 kP

 $- \cdot \cdot MC = 9.5\%$

→ − 75 kPa

 $- \cdot - MC = 12.5\%$

 \Box Results of field LWD tests were plugged into Eq. (2) to determine E_{target} .

□ Field LWD tests were conducted at four corresponding sites (shown above) using

- 🗖 🗕 168 kPa

 $- \cdot - MC = 12.5\%$

— Drv unit weig

three field-version Zorn 2000 LWDs (shown on the right).

