

International Association of Chinese Infrastructure Professionals

THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

Meta-Analysis on PET Plastic as Concrete Aggregate using Response Surface Methodology and Regression Analysis

Students: Beng Wei Chong, Texas States University, hdn31@txstate.edu Advisor: Xijun Shi, Texas States University, xijun.shi@txstate.edu

Introduction

- □ Polyethylene Terephthalate (PET) plastic is a common domestic waste that can be reused as concrete aggregate.
- □ Replacement of concrete aggregate with PET plastic improved the ductility and durability performance of concrete but compromised concrete compressive strength.
- □ However, huge discrepancy existed between each study as PET plastic might be used as either or both fine and coarse aggregate replacement with varying effect on concrete performance.
- □ Meta-analysis on PET aggregate studies was conducted using Response Surface Methodology (RSM) and regression analysis to thoroughly study the effect of PET aggregate on concrete strength.

Results and Discussion

RSM of PET-CA Expression

Objective

- □ To develop mathematical expressions for concrete with PET coarse aggregate (PET-CA) and PET fine aggregate (PET-FA)
- □ To investigate the effect of PET aggregate replacement on the compressive strength of concrete for both expressions.

Database & Methodology

- □ Literature on concrete with PET aggregate replacement was gathered.
- □ Input factors were the replacement percentage, nominal aggregate size (for PET-CA expression), and concrete mix designs.
- □ Aggregate size was not taken as a factor in PET-FA expression as studies used the standard fine aggregate size passing 5mm sieve.
- □ Output factor was 28-day compressive strength of concrete.

RSM Expression No. of Data

Input Factors

Output Factor

- Concrete strength decreases linearly with higher percentage of replacement.
- Concrete strength decreases linearly with larger maximum nominal aggregate size.
- > Morphology of PET aggregate is smooth, causing poor adhesion with cement paste and resulting in compromises at the interfacial transitional zone (ITZ).
- PET aggregate with greater size caused greater weakness at ITZ.

RSM of PET-FA Expression

W/C

PET-CA	42	PET replacement (%) Nominal aggregate size (mm) Cement content (kg/m ³) Coarse aggregate content (kg/m ³) Fine aggregate content (kg/m ³) Water-to-cement ratio	28-day compressive strength
PET-FA	60	PET replacement (%) Cement content (kg/m3) Coarse aggregate content (kg/m3) Fine aggregate content (kg/m3) Water-to-cement ratio	28-day compressive strength

□ Regression analysis was conducted by plotting the strength index (SI) of all data.

 $SI = \frac{CSR}{CSC}$

where:

CSR = 28-day compressive strength of concrete with PET plastic aggregate CSC = 28-day compressive strength of control mix without PET aggregate

Mathematical Expression

Notation	Factor	
CS ₂₈	28-day compressive strength (MPa)	
A	Cement content (kg/m ³)	
В	Coarse aggregate content (kg/m ³)	
С	Fine aggregate content (kg/m ³)	
D	Water-to-cement ratio	
E	PET replacement (%)	
F	Maximum nominal size (mm)	

PET-CA Expression

 $CS_{28} = -122.3 + 0.311B + 0.020C - 29.77D 0.383E + 2.232F - 0.000152B^2 -$ 0.00156BF + 0.000311CE -0.00138CF

 $R^2 = 0.9479$

PET-FA Expression

 $CS_{28} = -311.4 + 0.4A + 0.288B + 0.0823C +$ $157.6D + 1.522E - 0.000106B^2 -$

- Concrete strength decreases linearly with higher percentage of replacement at a steeper rate.
- Significant strength loss was observed at high replacement level. Water-cement ratio has a curvilinear effect on compressive strength.
- Reduction of strength occurred because PET plastic had a lower density and load-bearing capacity compared to river sand.

Regression Analysis

- ➢ For both expressions, compressive strength of concrete reduced with the introduction of PET aggregate
- ► However, for PET-FA, fine or granular size PET aggregate below 30% replacement may produce concrete with comparable or slightly increased strength (see highlighted zone).

Conclusions

- **D** PET aggregate replacement (either coarse or fine) reduced the compressive strength of concrete.
- □ The reduction of strength is proportional to percentage replacement as well as the maximum nominal size of PET aggregate
- □ PET plastic as coarse aggregate replacement generally produces concrete with lower

