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Introduction
 Due to the strong heterogeneity, asphalt concrete (AC) exhibits significant tension-compression (TC) 

asymmetry, i.e., much lower modulus in tension than in compression, especially at the high temperature.

 In conventional pavement design, only the compressive modulus is considered; the ignorance of the much 
lower tensile modulus may overestimate pavement’s performance and thus lead to tensile failures. 

 It is required to consider AC’s TC asymmetry in pavement design.

 Research Objective: Develop a constitutive model to consider AC’s TC asymmetry and further evaluate 
its effect on pavement response through numerical modeling.    

Results & Findings

Conclusions
 The developed dual viscoelastic constitutive model can effectively capture AC’s TC asymmetry, 

and the developed algorithm is for the first time to introduce AC’s asymmetry into pavement’s 
numerical modeling.

 Due to the much lower tensile modulus, considering AC’s TC asymmetry can significantly 
increase the strains in asphalt layers and thus lead to distresses, such as rutting and cracking. 

 A higher temperature or lower speed makes AC’s TC asymmetry more significant and thus 
induces more effects on asphalt pavements. 

Dual Viscoelastic Constitutive Model

 A temperature-dependent dual viscoelastic model was formulated to consider AC’s TC asymmetry.

 This model can switch between tensile and compressive moduli based on volumetric strain.

 For numerical modeling, the UMAT code of this model was also developed and verified.

Pavement Modeling
 Pavement model development

 A typical pavement structure in HK

 A dual-tire load was applied 

 Two material cases for AC layers

 UMAT_CC: consider compressive 
properties only (conventional) 

 UMAT_TC: consider tensile and 
compressive properties

 Simulation conditions

 Two speeds: 20 and 80 km/h

 Two temperature fields: high 
temperature (at 14:00) and low 
temperature (at 6:00) on a summer day.

Tension-compression (TC) asymmetry Pavement distresses

 AC’s TC asymmetry mainly affects the response of AC layers.

Model considering TC asymmetry at 20 km/h and high 
temperature (14:00)

 6% increase in maximum vertical deformation 

 45% increase in longitudinal tensile strain (LE11)

 11% increase in transverse tensile strain (LE22)

 Vehicular speed and temperature effects

 A lower vehicular speed or higher temperature field induces 
more effect of AC’s TC asymmetry on asphalt pavement.

Longitudinal Strain (E11) at High Temperature (14:00)

Transverse Strain (E22) at High Temperature (14:00)

Temperature Effect

Model verification

Pavement structure model

E22 on the top of BC layer
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Unit element model

F= sin (2𝜋𝑡)

Resultant strain curves

Applied stress
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Vertical deformation at high temperature
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Schematic diagram of the developed dual viscoelastic model


