

International Association of Chinese Infrastructure Professionals

THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

Investigating the storage stability of asphalt binder modified with treated high-density polyethylene (HDPE) using Fourier-transform infrared spectroscopy (FTIR)

Students: Anyou Zhu, Missouri University of Science and Technology, az53r@mst.edu Research Associate: Dr. Yizhuang David Wang, Missouri University of Science and Technology Advisor: Dr. Jenny Liu, Missouri University of Science and Technology

INTRODUCTION		OBJECTIVE		
 Million tons of plastics were disposed every year Incorporating waste plastics into asphalt mixtures is a way of recycling them A significant challenge of using the plastic-modified binder is its poor storage stability New methods of recycling HDPE in asphalt need to be developed and evaluated 		 To develop flame treatment and acid treatment methods to make plastic more compatible with asphalt binder To explore the feasibility of treated HDPE in improving modified asphalt storage stability 		
	METHO	DOLOGY		
Μ	Characterizations methods			
 Flame treated HDPE powder To introduce oxygen-containing functional groups on plastic surface 	 Acid treated HDPE per Sulfuric and nitric acid in different ratios and different 	ewder t	Storage stability test	FTIK test

Two parameters to control the quality and level of treatment: treating distance and time

treating durations

DETERMINATION OF OPTIMUM FLAME AND ACID TREATMENTS

□ Effect of flame treatment on HDPE powder

- Carbonyl group (C=O stretch) was the only new functional group generated after flame treatment
- > Carbonyl index (CI) = $A_{1720cm^{-1}} / A_{1462cm^{-1}}$
- \succ 13cm speed 0 (0.33 seconds) was selected as the optimum treatment condition

- □ Effect on acid treatment on HDPE powder
 - Sulfoxide group is the new generated functional group
 - Sulfoxide index (SI) = $A_{1031cm^{-1}} / A_{1462cm^{-1}}$
- SI increased with longer treatment durations
- Sulfuric: nitric acid = 2:1 yielded the highest SI value

RESULTS AND DISCUSSION

□ All modified binders

□ FTIR results

Some new functional groups were generated (i.e., C-

- □ Softening point test results
 - PPLB had the lowest TI, followed by PPDB (Size matters)
 FPB has nearly doubled TI compared to PPDB (The flame treatment HDPE was more reactive)

Type of binder	Designa tion	Modifiers and dosages (wt./wt. of binder)
Plastic Pellet-modified Binder	PPLB	HDPE pellet: 5%
Plastic Powder-modified Binder	PPDB	HDPE powder: 5%
Flame-treated Plastic-modified Binder	FPB	Optimum flame treated HDPE powder: 5%
Flame-treated Plastic and Kaolinite-modified Binder	FPKB	Optimum flame treated HDPE powder: 5% Kaolinite clay: 2%
Flame-treated Plastic and Bentonite-modified Binder	FPBB	Optimum flame treated HDPE powder: 5% Bentonite clay: 2%
Flame-treated Plastic and Rejuvenator-modified Binder	FPJB	Optimum flame treated HDPE powder: 5% Rejuvenator: 5%
Sulfuric Acid-treated Plastic- modified Binder	SAPB	Optimum sulfuric acid treated HDPE powder: 5%
Mixed Acid-treated Plastic- modified Binder	MAPB	Optimum mixed acid treated HDPE powder
Mixed Acid-treated Plastic and Kaolinite-modified Binder	MAPKB	Optimum mixed acid treated HDPE powder Kaolinite clay: 2%

- O stretching, O=S=O stretching, S=O stretching, and C-H bending)
- Total peaks index (TI) = $\sum A_{multiple peaks} / \sum A_{multiple peaks} / \sum A_{multiple peaks}$
 - $A_{1462cm^{-1}} \text{ (where, } \sum A_{multiple \ peaks} = A_{1250cm^{-1}} + A_{1100\ cm^{-1}} + A_{1020\ cm^{-1}} + A_{800cm^{-1}})$

- Top sections exhibited much higher softening points than the bottom sections (Storage stability was not good)
- SAPB, MAPB, and MAPKB showed better TI and than FPB
- > TI and \triangle SP are highly correlated

CONCLUSIONS

- □ FTIR and storage stability tests had a high correlation
- □ Smaller sized plastic had better compatibility with asphalt
- □ Flame treatment and acid treatment both made HDPE powder more reactive
- □ Acid-treated HDPE powder is more compatible with binder than flame-treated HDPE powder
- □ Mixed Acid-treated Plastic and Kaolinite-modified Binder (MAPKB) is the optimum modified binder in terms of storage stability

