

International Association of Chinese Infrastructure Professionals

THE 13th IACIP Annual Workshop: Adaptive Infrastructure under Climate Change

Evaluation of Thermal and Rheological Properties of Phase Change Material-incorporated Asphalt Mastic with Porous Fillers

Farshad Saberi K, Missouri University of Science and Technology, farshad@mst.edu Yizhuang David Wang, Missouri University of Science and Technology, y.wang@mst.edu

Jenny Liu, Missouri University of Science and Technology, jennyliu@mst.edu

Introduction

Problem Statement

- Rutting and transverse cracks happen at high and low temperatures and lead to 25.9% and 40% of pavement damages.
- High temperature in asphalt pavements leads to many social and urban issues such as urban heat island (UHI) effect.
 Objective
- Explore the feasibility of using phase change materials in asphalt materials in mastic scale by performing rheological and thermal

tests Materials

Two candidates for carrier materials:

Results & Discussion

Differential Scanning Calorimetry Test Results

Tm (C)

39.8

39.7

40.0

39.9

166.7

23.32

Frequency Sweep

X

X

X

 Δ Htm (J/g) Δ HTm (J/g) η (%)

12.52

19.43

26.81

87.9

87.0

87.0

- Diatomite (DI)
- Expanded perlite (EP)

Four candidates for PCMs:

- Polyethylene glycol
- Luric acid
- o Paraffin-42
- Paraffin-58

Composite Phase Change Materials Selection (CPCMs) Define three different criteria for CPCM selection:

• Scanning electron Microscope (SEM) image analysis

Diatomite: Cylindrical shape, high dense porous structure and large specific surface area Expanded perlite: Spherical shape, round edges, low number

$\eta(\%) = \frac{\Delta H_{tm}}{\Delta H_{Tm}} \times 100$

 η (%): Efficiency of PCM in modified mastic; Δ Htm (J/g): Testing enthalpy; Δ HTm (J/g): Theoretical enthalpy.

Real-time Temperature Performance

Mastics

DI-PEG_P50F50

DI-PEG_P50F75

DI-PEG_P50F100

PEG

Performance by Superpave factors (G*/sinδ, S, m-Value)

of pores PCM trapped inside the porous structure of diatomite more efficiently compared to expanded perlite.

• Filter Paper Test

• Master curve by frequency sweep test

Mastic	СРСМ	CPCM ratio (Carrier:PCM)	Filler replacement by CPCM
HL (control sample)	-	-	-
DI-PEG_P50F50	DI/PEG	50:50	50
DI-LU_P50F50	DI/LU	50:50	50
DI-Pa(42)_P50F50	DI/Pa-42	50:50	50
DI-Pa(58)_P50F50	DI/Pa-58	50:50	50
EP-PEG_P40F50	EP/PEG	60:40	50
EP-LU_P40F50	EP/LU	60:40	50
EP-Pa(42)_P40F50	EP/Pa-42	60:40	50
EP-Pa(58)_P40F50	EP/Pa-58	60:40	50

Conclusions

- DSC test showed that the maximum latent heat storage was observed by DI-PEG_P50F100, and real-time temperature performance test confirmed the thermal regulation effect of CPCM on asphalt mastic.
- The rutting factor obtained from the Superpave DSR test suggested that the rutting resistance of modified mastics was lower than the control mastic when the temperature was below 70°C; the mastics with CPCMs had higher permanent deformation resistance at high temperature.
- The low-temperature BBR tests confirmed that the modified mastics had higher low-temperature cracking resistance.

